Abstract

Ds insertion in rice OsPS1-F gene results in semi-dwarf plants with reduced tiller number and grain yield, while genetic complementation with OsPS1-F rescued the mutant phenotype. Photosynthetic electron transport is regulated in the chloroplast thylakoid membrane by multi-protein complexes. Studies about photosynthetic machinery and its subunits in crop plants are necessary, because they could be crucial for yield enhancement in the long term. Here, we report the characterization of OsPS1-F (encoding Oryza sativa PHOTOSYSTEM 1-F subunit) using a single copy Ds insertion rice mutant line. The homozygous mutant (osps1-f) showed striking difference in growth and development compared to the wild type (WT), including, reduction in plant height, tiller number, grain yield as well as pale yellow leaf coloration. Chlorophyll concentration and electron transport rate were significantly reduced in the mutant compared to the WT. OsPS1-F gene was highly expressed in rice leaves compared to other tissues at different developmental stages tested. Upon complementation of the mutant with proUBI::OsPS1-F, the observed mutant phenotypes were rescued. Our results illustrate that OsPS1-F plays an important role in regulating proper growth and development of rice plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call