Abstract

By electron microscopy of the coxal gills in two species of estuarine amphipod crustaceans, Grandidierella japonica and Melita satifragella, we found a patch-like, specialized tissue area which consisted of unique cells closely resembling the salt-excreting cells in the gill of the brine shrimp and so-called chloride cells in teleost gills. These cells were characterized by an abundance of mitochondria, two kinds of extensive networks of cytoplasmic tubules, well-developed lamellar infoldings of the basal cell membrane, sparse microvillous projections of the apical border, and numerous large vacuoles with several incomplete partitions. The large (60 nm in diameter) and the small (30 nm) cytoplasmic tubular networks were found in the basal and the apical portions of the cell, respectively. The large networks, which were both directly and indirectly (through the lamellar system) continuous with the basal cell membrane, were regarded as extensions of the cell membrane. Both the outer walls and the partition walls of the vacuoles were reinforced with a parallel array of microtubules. The results suggest that this unique tissue plays an important role in the active transport of electrolytes to maintain a constant osmotic pressure of the hemolymph under widely fluctuating salinities of the estuarine environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.