Abstract

Abstract The equiatomic metal-rich phosphide NbCrP shows a structural phase transition around 125 K. The structures of the high- and low-temperature modifications were refined from single crystal X-ray diffractometer data of an un-twinned crystal: TiNiSi type, Pnma, a = 619.80(2), b = 353.74(4), c = 735.24(6) pm, wR = 0.0706, 288 F 2 values, 20 variables at 240 K and P121/c1, a = 630.59(3), b = 739.64(4), c = 933.09(5) pm, β = 132.491(6)°, wR = 0.0531, 1007 F 2 values, 57 variables at 90 K. The structural phase transition is of a classical Peierls type. The equidistant chromium chain in HT-NbCrP (353.7 pm Cr–Cr) splits pairwise into shorter (315.2 pm) and longer (373.2 pm) Cr–Cr distances. This goes along with a strengthening of Cr–P bonding. The superstructure formation is discussed on the basis of a group–subgroup scheme. Electronic structure calculations show a lifting of band degeneracy. Protection of the non-symmorphic symmetry of space group Pnma is crucial for the phase transition. The estimated charge modulation is consistent with the interpretation as Peierls transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call