Abstract

The ortho, meta, and para isomers of manganese(III) 5,10,15, 20-tetrakis(N-methylpyridyl)porphyrin, MnTM-2-PyP5+, MnTM-3-PyP5+, and MnTM-4-PyP5+, respectively, were analyzed in terms of their superoxide dismutase (SOD) activity in vitro and in vivo. The impact of their interaction with DNA and RNA on the SOD activity in vivo and in vitro has also been analyzed. Differences in their behavior are due to the combined steric and electrostatic factors. In vitro catalytic activities are closely related to their redox potentials. The half-wave potentials (E1/2) are +0.220 mV, +0.052 mV, and +0.060 V versus normal hydrogen electrode, whereas the rates of dismutation (kcat) are 6.0 x 10(7), 4.1 x 10(6), and 3.8 x 10(6) M-1 s-1 for the ortho, meta, and para isomers, respectively. However, the in vitro activity is not a sufficient predictor of in vivo efficacy. The ortho and meta isomers, although of significantly different in vitro SOD activities, have fairly close in vivo SOD efficacy due to their similarly weak interactions with DNA. In contrast, due to a higher degree of interaction with DNA, the para isomer inhibited growth of SOD-deficient Escherichia coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.