Abstract

BackgroundThe order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification.ResultsThe supertrees most supported by the underlying input trees are produced using matrix representation with compatibility (MRC) (from an all-in and a compartmentalised analysis). Whilst relationships at the tips of the tree tend to be well supported, those along the backbone of the tree (e.g. between Parasitica superfamilies) are generally not. Ten significant shifts in diversification (six positive and four negative) are found common to both MRC supertrees. The Apocrita (wasps, ants, bees) experienced a positive shift at their origin accounting for approximately 4,000 species. Within Apocrita other positive shifts include the Vespoidea (vespoid wasps/ants containing 24,000 spp.), Anthophila + Sphecidae (bees/thread-waisted wasps; 22,000 spp.), Bethylidae + Chrysididae (bethylid/cuckoo wasps; 5,200 spp.), Dryinidae (dryinid wasps; 1,100 spp.), and Proctotrupidae (proctotrupid wasps; 310 spp.). Four relatively species-poor families (Stenotritidae, Anaxyelidae, Blasticotomidae, Xyelidae) have undergone negative shifts. There are some two-way shifts in diversification where sister taxa have undergone shifts in opposite directions.ConclusionsOur results suggest that numerous phylogenetically distinctive radiations contribute to the richness of large clades. They also suggest that evolutionary events restricting the subsequent richness of large clades are common. Problematic phylogenetic issues in the Hymenoptera are identified, relating especially to superfamily validity (e.g. "Proctotrupoidea", "Mymarommatoidea"), and deeper apocritan relationships. Our results should stimulate new functional studies on the causes of the diversification shifts we have identified. Possible drivers highlighted for specific adaptive radiations include key anatomical innovations, the exploitation of rich host groups, and associations with angiosperms. Low richness may have evolved as a result of geographical isolation, specialised ecological niches, and habitat loss or competition.

Highlights

  • IntroductionThe order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above

  • The order Hymenoptera contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above

  • One of the greatest challenges in evolutionary biology is to explain heterogeneity in species richness amongst taxa, and in particular why a few notable taxa comprise the majority of species [1,2,3,4]

Read more

Summary

Introduction

The order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification. Phylogenies are useful tools for understanding the evolution of species richness. Since they specify shared common ancestry and absolute or relative taxon age they allow appropriate comparisons to be made amongst taxa, [6,7,8]. Taxon age in turn is important because for a given positive net rate of cladogenesis, species richness will increase over time.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call