Abstract

The possible origins of the leaky characteristics of a Schottky barrier on p-GaN have been investigated. The as-grown samples did not show any electrical activity using Hall measurements. Ni diodes made on as-activated samples, either at 950/spl deg/C for 5 s or at 750/spl deg/C for 5 min exhibited quasiohmic behavior. Upon sequential etching of the sample to remove a surface layer of 150 /spl Aring/, 1200 /spl Aring/, and 5000 /spl Aring/ from the sample, the I-V behavior became rectifying. I-V-T measurements showed that the slopes of the lnI-V curves were independent of the temperature, indicative of a prominent component of carrier tunneling across the Schottky junction. C-V measurements at each etch-depth indicated a decreasing acceptor concentration from the surface. The highly doped (>1.7 /spl times/ 10/sup 19/ cm/sup -3/) and defective surface region (within the top 150 /spl Aring/ from surface) rendered the as-activated Schottky diodes quasiohmic in their I-V characteristics. The leaky I-V characteristics, often reported in the literature, were likely to originated from the surface layer, which gives rise to carrier tunneling across the Schottky barrier. This highly doped/defective surface region, however, can play an important role in ohmic contact formation on p-GaN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call