Abstract

The ultra-luminous intermediate-mass black-hole system HLX-1 in the ESO 243-49 galaxy exhibits variability with a possible recurrence time of a few hundred days. Finding the origin of this variability would constrain the still largely unknown properties of this extraordinary object. Since it exhibits an intensity-hardness behavior characteristic of black-hole X-ray transients, we have analyzed the variability of HLX-1 in the framework of the disk instability model that explains outbursts of such systems. We find that the long-term variability of HLX-1 is unlikely to be explained by a model in which outbursts are triggered by thermal-viscous instabilities in an accretion disc. Possible alternatives include the instability in a radiation-pressure dominated disk but we argue that a more likely explanation is a modulated mass-transfer due to tidal stripping of a star on an eccentric orbit around the intermediate-mass black hole. We consider an evolutionary scenario leading to the creation of such a system and estimate the probability of its observation. We conclude, using a simplified dynamical model of the post-collapse cluster, that no more than 1/100 to 1/10 of Mbh < 10^4 Msun IMBHs - formed by run-away stellar mergers in the dense collapsed cores of young clusters - could have a few times 1 Msun Main-Sequence star evolve to an AGB on an orbit eccentric enough for mass transfer at periapse, while avoiding collisional destruction or being scattered into the IMBH by 2-body encounters. The finite but low probability of this configuration is consistent with the uniqueness of HLX-1. We note, however, that the actual response of a standard accretion disk to bursts of mass transfer may be too slow to explain the observations unless the orbit is close to parabolic (and hence even rarer) and/or additional heating, presumably linked to the highly time-dependent gravitational potential, are invoked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.