Abstract

We present three-dimensional space velocities of stars selected to be consistent with membership in the Virgo stellar substructure. Candidates were selected from SA 103, a single 40x40 arcmin field from our proper motion (PM) survey in Kapteyn's Selected Areas (SAs), based on the PMs, SDSS photometry, and follow-up spectroscopy of 215 stars. The signature of the Virgo substructure is clear in the SDSS color-magnitude diagram (CMD) centered on SA 103, and 16 stars are identified that have high Galactocentric-frame radial velocities (V_GSR > 50 km/s) and lie near the CMD locus of Virgo. The implied distance to the Virgo substructure from the candidates is 14+/-3 kpc. We derive mean kinematics from these 16 stars, finding a radial velocity V_GSR = 153+/-22 km/s and proper motions (mu_alpha*cos(delta), mu_delta) = (-5.24, -0.91)+/-(0.43, 0.46) mas/yr. From the mean kinematics of these members, we determine that the Virgo progenitor was on an eccentric (e ~ 0.8) orbit that recently passed near the Galactic center (pericentric distance R_p ~ 6 kpc). This destructive orbit is consistent with the idea that the substructure(s) in Virgo originated in the tidal disruption of a Milky Way satellite. N-body simulations suggest that the entire cloud-like Virgo substructure (encompassing the "Virgo Overdensity" and the "Virgo Stellar Stream") is likely the tidal debris remnant from a recently-disrupted massive (~10^9 M_sun) dwarf galaxy. The model also suggests that some other known stellar overdensities in the Milky Way halo (e.g., the Pisces Overdensity and debris near NGC 2419 and SEGUE 1) are explained by the disruption of the Virgo progenitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.