Abstract
The human complement component C4 occurs in many different forms which show big differences in their haemolytic activities. This phenomenon seems likely to be of considerable importance both physiologically and pathologically. C4 is coded by duplicated genes between HLA-D and HLA-B loci in the major histocompatibility complex in man. Several fold differences in haemolytic activity between products of the two loci C4-A and C4-B have been correlated with changes of six amino acid residues in this large protein of 1722 residues and with differences of several fold in the covalent binding of C4 to antibody-antigen aggregates. Some allotypes of one locus also differ markedly, notably C4-A6 which has 1/10th the haemolytic activity of other C4-A allotypes. A monoclonal antibody affinity column has been prepared which is able to separate C4-A from C4-B proteins and, using serum from an individual expressing only the C4-A6 allele at the C4-A locus, C4-A6 protein has been prepared. Investigation has shown C4-A6 to have the same reactivity as other C4-A allotypes except in the formation of the complex protease, C5 convertase. This protease is formed from C4, C2 and C3 and if C4-A6 is used it has approximately 1/5th the catalytic activity compared with other C4-A allotype. Allelic differences in sequence identified in C4 proteins so far are few and it is probable that the big difference in catalytic activity of C5 convertase is caused by very small changes in structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.