Abstract

2-Oxopiperazines and their derivatives are important pharmacophores found in numerous bioactive products. The potency of these compounds depends on the nature and/or position of their substituent(s) as well as on their chirality. Hence, it is important to develop, control and optimize synthetic routes leading to enantiomerically pure substituted 2-oxopiperazines. In this work we report on the origin of this stereoselectivity, upon alkylation of 2-oxopiperazines at position C3, studied by means of quantum chemistry calculations. Indeed, this alkylation with methyl chloride is predicted to afford mainly the exo product with a 98:2 ratio. To this purpose, we model the reaction path leading to both enantiomers by scrutinizing the structures and energetics of the pre-reaction complexes, the transition states and the post-reaction complexes. The computational results are in good agreement with the experimental observations, and provide valuable insights into the origins of this specificity. From the conformational analysis of the piperazine ring and of intramolecular interaction patterns, we show that the enantiofacial discrimination is achieved by a subtle balance between sterical hindrance and control of the conformation of the piperazine ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.