Abstract

The X-ray emission from active galactic nuclei (AGN) is highly variable. Measurements of time lags (characterised by lag spectra) between variability in the light curves in energy bands corresponding to directly observed continuum emission from the corona around the black hole and to X-rays reflected from the accretion disc adds a further dimension to studies of the structure and energetics of these systems. We seek to understand these measurements in terms of the physical parameters of the X-ray source (its location, extent, etc.) through the calculation of theoretical lag spectra for a range of source parameters in general relativistic ray tracing simulations, combined with knowledge of the observed variability of the X-ray emission from AGN. Due to the proximity of the emission to the central black hole, Shapiro delays are important and the effects of general relativity should be considered when interpreting the lags as the light travel time between the source and reflector. We show that it is important to consider dilution of the lag by the contribution of both the primary and reflected spectral components to the observed energy bands. We find that the observed lag spectrum of the narrow line Seyfert 1 galaxy 1H 0707-495 implies an X-ray source extending radially outwards to around 35rg and at a height of around 2rg above the plane of the accretion disc, consistent with the constraints obtained independently by considering the emissivity profile of the accretion disc. By investigating the influence of the propagation of X-ray luminosity fluctuations through the source region we find it is possible to reproduce the shape of the low frequency part of the lag spectrum (where the hard 'primary' band lags behind the soft 'reflected' band) as the effect of luminosity fluctuations originating in the centre of the X-ray source, close to the black hole, and propagating outwards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.