Abstract

We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy barrier of the cycloaddition between anthracene and triazolinedione is much lower than that for maleimides. The analysis of frontier molecular orbitals (FMO) reveals that for the TAD system there is a much efficient charge transfer as consequence of a more delocalized HOMO over the dienophile fragment at the transition state structure. The Activation Strain Model revealed that the higher reactivity of TAD in the cycloaddition is related to the lower distortion of both fragments to attain the geometry of the transition state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.