Abstract

Human stimulus-frequency otoacoustic emissions (SFOAEs) evoked by low-level stimuli have previously been shown to have properties consistent with such emissions arising from a linear place-fixed reflection mechanism with SFOAE microstructure thought to be due to a variation in the effective reflectance with position along the cochlea [Zweig and Shera, J. Acoust. Soc. Am. 98 (1995) 2018–2047]. Here we report SFOAEs in the guinea pig obtained using a nonlinear extraction paradigm from the ear-canal recording that show amplitude and phase microstructure akin to that seen in human SFOAEs. Inverse Fourier analysis of the SFOAE spectrum indicates that SFOAEs in the guinea pig are a stimulus level-dependent mix of OAEs arising from linear-reflection and nonlinear-distortion mechanisms. Although the SFOAEs are dominated by OAE generated by a linear-reflection mechanism at low and moderate stimulus levels, nonlinear distortion can dominate some part of, or all of, the emission spectrum at high levels. Amplitude and phase microstructure in the guinea pig SFOAE is evidently a construct of (i) the complex addition of nonlinear-distortion and linear-reflection components; (ii) variation in the effective reflectance with position along the cochlea; and perhaps (iii) the complex addition of multiple intra-cochlear reflections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call