Abstract

SummaryRhythmic layering in the Skaergaard intrusion shows variation in crystal size and in modal proportions of primocrysts with structural height. These changes are ascribed to variations in nucleation rates of primocrysts. The nucleation theory requires that crystallization occurs under supercooled conditions, and that the crystallization of one primocryst phase may change the composition of the magma in such a manner that the nucleation rates of other primocrysts are influenced. Both these constraints appear to have been fulfilled for the Skaergaard intrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.