Abstract

We study the origin of the non-thermal emission from the intracluster medium, including the excess hard X-ray emission and cluster-wide radio haloes, through fitting two representative models to the Coma cluster. If the synchrotron emitting relativistic electrons are accelerated in situ from the vast pool of thermal electrons, then a quasi-stationary solution of the kinetic equation with particle acceleration through turbulence at high energies (>200 keV) naturally produces a population of supra-thermal electrons responsible for the excess hard X-ray emission through bremsstrahlung. Inverse Compton scattering is negligible at hard X-ray energies in this case. The radio halo flux density constrains the magnetic field strength to a value close to that of equipartition ~1 uG. Alternatively, if the relativistic electrons are injected from numerous localised `external' sources then the hard X-rays are best explained by inverse Compton scattering from GeV electrons, and little of the hard X-radiation has a bremsstrahlung origin. In this case, the magnetic field strength is constrained to ~0.1-0.2 uG. Both models assume that the non-thermal emissions are generated by a single electron spectrum, so that only two free parameters, well constrained by the observed hard X-ray and radio halo spectra, are needed in either case. Measurements of the cluster magnetic field will distinguish between the models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.