Abstract

We study the origin of the non-thermal emission from the intracluster medium, including the excess hard X-ray emission and cluster-wide radio haloes, through fitting two representative models to the Coma cluster. If the synchrotron emitting relativistic electrons are accelerated in situ from the vast pool of thermal electrons, then a quasi-stationary solution of the kinetic equation with particle acceleration through turbulence at high energies (>200 keV) naturally produces a population of supra-thermal electrons responsible for the excess hard X-ray emission through bremsstrahlung. Inverse Compton scattering is negligible at hard X-ray energies in this case. The radio halo flux density constrains the magnetic field strength to a value close to that of equipartition ~1 uG. Alternatively, if the relativistic electrons are injected from numerous localised `external' sources then the hard X-rays are best explained by inverse Compton scattering from GeV electrons, and little of the hard X-radiation has a bremsstrahlung origin. In this case, the magnetic field strength is constrained to ~0.1-0.2 uG. Both models assume that the non-thermal emissions are generated by a single electron spectrum, so that only two free parameters, well constrained by the observed hard X-ray and radio halo spectra, are needed in either case. Measurements of the cluster magnetic field will distinguish between the models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.