Abstract

Ocean island basalt (OIB) suites display a wide diversity of major element, trace element, and isotopic compositions. The incompatible trace element and isotopic ratios of OIB reflect considerable heterogeneity in the mantle source regions. In addition to the distinctive Sr, Nd and Pb isotopic signatures of the HIMU, EMI and EMII OIB end-members, differences in incompatible trace element ratios among these end-members are of great help in identifying the nature and origin of their sources. Examination of trace element and isotopic constraints for the three OIB end-members suggests a relatively simple model for their origin. The dominant component in all OIB is ancient recycled basaltic oceanic crust which has been processed through a subduction zone, and which carries the trace element and isotopic signature of a dehydration residue (enrichment in HFSE relative to LILE and LREE, low Rb/Sr, but high U/Pb and Th/Pb ratios leading to the development of radiogenic Pb isotope compositions). HIMU OIB are derived from such a source, with little contamination from other components. Both the EMI and EMII OIB end-members are also dominantly derived from this source, but they contain significant proportions (up to 5–10%) of sedimentary components derived from the continental crust. In the case of EMI OIB, ancient pelagic sediment with high LILE/HFSE, LREE/HFSE, Ba/Th and Ba/La ratios, and low U/Pb ratios, is the contaminant. EMII OIB are also contaminated by a sedimentary component, in the form of ancient terrigenous sediment with high LILE/HFSE and LREE/HFSE ratios, but lacking relative Ba enrichment, and with higher U/Pb and Rb/Sr ratios. A model whereby the source for all OIB is ancient (1–2 Ga old) subducted oceanic crust ± entrained sediment (pelagic and/or terrigenous) is therefore consistent with the trace element and isotopic data. Although subducted oceanic lithosphere will accumulate and be dominantly concentrated within the mesosphere boundary layer, forming the source for hot-spots, such material may also become convectively dispersed within the depleted upper mantle as blobs or streaks, giving rise to small-scale chemical heterogeneities in the upper mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call