Abstract

Spin-diffusion (SD) is amongst the first methods proposed to spatially transfer polarization between dipolar-coupled nuclear spins. Lab-frame SD has proved particularly useful in structural characterization of a large variety of molecules. During SD, the rate of magnetization transfer between the two nuclei depends on the square of the dipolar coupling and the zero-quantum lineshape of the two spins. The relative sign of the diagonal and cross-peaks is determined by the spin part of the dipolar Hamiltonian. Practically, SD experiments are used in two ways: (a) SD transfer amongst only the protons (known as proton spin-diffusion or PSD) and b) SD amongst rare nuclei, coupled to a strong proton bath, known as proton driven spin-diffusion (PDSD). It is well established that the diagonal and cross-peaks have the same sign during SD based polarization transfer. 2D PSD experiments recorded on Histidine.HCl.H2O sample at fast magic angle spinning (MAS) show that some of the cross-peaks in the 2D spectrum are negative with respect to the diagonal peaks. Cross-relaxation due to stochastic motion is generally believed to give rise to such negative peaks. Herein, we use theoretical calculations, numerical simulations and experiments to show that the origin of the negative cross-peaks in PSD spectrum is due to coherent interactions. The origin of negative peaks can be specifically ascribed to a four spin, double-flip-double flop term, in the third-order Hamiltonian. These terms become the dominant terms at fast spinning when additional — conditions are satisfied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call