Abstract

An additive layer manufacture (ALM) technique, electron beam melting, has been used for the production of simple geometries, from prealloyed Ti-6Al-4V powder. Microstructure, texture, and mechanical properties achieved under standard operating conditions have been investigated. Three transitional regions are observed with a change in microstructural formation dependent on the thermal mass of deposited material. Prior β-phase reconstruction, from room temperature α-phase electron backscatter diffraction (EBSD) data, reveals a strong texture perpendicular to the build axis. Variation of build temperature within the processing window of 898 K to 973 K (625 °C to 700 °C) is seen to have a significant effect on the properties and microstructure of both as-deposited and hot isostatically pressed (HIP) samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.