Abstract

Metamorphic core complexes form as the result of major continental extension, when the middle and lower continental crust is dragged out from beneath the fracturing, extending upper crust. Movement zones capable of producing such effects evolve in space as well as with time. Deforming rocks in the footwall are uplifted through a progression of different metamorphic and deformational environments, producing a characteristic sequence of (overprinted) meso- and microstructures. The movement zone is folded as the result of the bowing upwards of the lower crust to form a broad basement culmination, as the result of isostatic rebound due to tectonic denudation, but most likely also as the result of local isostatic adjustments due to granite intrusion in the middle crust. A succession of splays branch off from the master detachment fault at depth, excising substantial portions of the lower portions of the upper plate as successive detachment faults eat upwards through it. At the same time, detachment faults incise into progressively deeper levels of the lower plate, although the amount of incision is limited, because the locus of movement remains at approximately the same level in the lower plate. The detachment faults presently observed in the metamorphic core complexes are relatively young features, formed late in the geological evolution of these bodies, and are only the last in a succession of low-angle normal faults that sliced through the upper crust at the upward terminations of major, shallow-dipping, ductile shear zones in the extending Cordilleran orogen. Excisement of listric fault bottoms can explain some of the enigmatic domino-like fault blocks, and other structural relations observed in these terranes. Evidence in support of this model is illustrated from detachment terranes in the northern Colorado River region of southern Nevada, southeastern California and western Arizona, where multiple generations of detachment faults have produced remarkable excisement and incisement geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call