Abstract

The origin of life is an extraordinary problem that leads back to the structure and dynamics of the cosmos and early development of organic molecules. Within that wider question lies an unsolved problem that has troubled biologists for 150 years. What is the origin of the dominant presence of left-handed stereoisomers of amino acids in nature even though their synthesis normally results in an equal mixture of the right- and left-handed molecular forms? We propose that asymmetric Earth rotation caused at dawn and dusk circularly polarized UV light (CPUVL) of opposite polarity and reversed temperature profiles in the oceans. Destruction of the d-isomer by CPUVL at dusk in a sea surface hotter than at dawn created a daily l-isomer excess protected from radiation by nightfall, preserved by down-flow (diffusive, mechanical) into cold, darker regions, eventually initiating an l-amino-acid excess embodied in early marine forms. Innumerable mechanisms have been proposed for the origin of l-chiral dominance in amino acids and none proven. Since the thalidomide tragedy, homochirality of amino acids has been a growing practical issue for medicine. Understanding its origin may bring further and unexpected benefits. It may also be a modest pointer to the possibility of positive answers to whether intelligent life will have the capacity to continue to protect itself from conditions inimical to survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call