Abstract
The intermuscular adipose tissue (IMAT) is a depot of adipocytes located between muscle bundles. Several investigations have recently been carried out to define the phenotype, the functional characteristics, and the origin of the adipocytes present in this depot. Among the different mechanisms that could be responsible for the accumulation of fat in this site, the dysdifferentiation of muscle-derived stem cells or other mesenchymal progenitors has been postulated, turning them into cells with an adipocyte phenotype. In particular, muscle satellite cells (SCs), a heterogeneous stem cell population characterized by plasticity and self-renewal that allow muscular growth and regeneration, can acquire features of adipocytes, including the abilities to express adipocyte-specific genes and accumulate lipids. Failure to express the transcription factors that direct mesenchymal precursors into fully differentiated functionally specialized cells may be responsible for their phenotypic switch into the adipogenic lineage. We proved that human SCs also possess a clear adipogenic potential that could explain the presence of mature adipocytes within skeletal muscle. This occurs under some pathological conditions (i.e., primary myodystrophies, obesity, hyperglycemia, high plasma free fatty acids, hypoxia, etc.) or as a consequence of thiazolidinedione treatment or simply because of a sedentary lifestyle or during aging. Several pathways and factors (PPARs, WNT growth factors, myokines, GEF-GAP-Rho, p66(shc), mitochondrial ROS production, PKCβ) could be implicated in the adipogenic conversion of SCs. The understanding of the molecular pathways that regulate muscle-to-fat conversion and SC behavior could explain the increase in IMAT depots that characterize many metabolic diseases and age-related sarcopenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.