Abstract

The Nuku Hiva Pliocene island (Marquesas, French Polynesia) is composed of a large half-collapsed tholeiitic shield volcano (the Tekao edifice), the caldera of which is filled up by the younger Taiohae volcano. The latter edifice is characterised by a complex magmatic association including minor mafic lavas (olivine tholeiites, alkali basalts and basanites), abundant intermediate lavas (hawaiites with subsidiary mugearites, both covering 47% of the surface of the volcano) and lesser amount of evolved lavas (K-rich and Na-rich trachytes and minor benmoreites, covering 25% of the edifice). Most intermediate and evolved Taiohae lavas are amphibole-rich and crystallised under high oxygen fugacities. The mafic Taiohae lavas originated from lower degree of melting of mantle sources more enriched than that of the shield volcano tholeiites. We show that closed-system fractional crystallisation of the Taiohae basaltic magmas can account for the origin of Taiohae hawaiites and mugearites, provided that separation of substantial amount of amphibole and/or apatite occurred during this process. Similarly, fractionation of benmoreitic magmas involving large amounts of amphibole and mica may account for the genesis of K-rich and Na-rich trachytes, respectively. However, fractional crystallisation cannot account for the derivation of benmoreitic magmas from mugearitic ones: since, this process fails to explain the abrupt increase in K 2O from the latter to the former. In addition, the isotopic signature of trachytes and benmoreites is clearly distinct (more EM II-rich) from that of Taiohae basalts, hawaiites and mugearites. Three hypotheses could account for the genesis of benmoreitic magmas: assimilation of oceanic material with a strong EM II signature, differentiation of non-sampled mafic magmas derived from a mantle source having a EM II-rich signature and partial melting at depth of mafic material with a strong EM II signature. The oxidised character of Nuku Hiva lavas, uncommon in oceanic island settings, suggests interaction with water and/or the contribution of an oxidised (altered?) source material to their genesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call