Abstract
We report the results of the analysis of high resolution photospheric line spectra obtained with the UVES instrument on the VLT for a sample of 15 solar-type stars selected from a recent survey of the distribution of H and K chromospheric line strengths in the solar-age open cluster M67. We find upper limits to the projected rotation velocities that are consistent with solar-like rotation (i.e., v sini ~< 2-3 km/s) for objects with Ca II chromospheric activity within the range of the contemporary solar cycle. Two solar-type stars in our sample exhibit chromospheric emission well in excess of even solar maximum values. In one case, Sanders 1452, we measure a minimum rotational velocity of vsini = 4 +/- 0.5 km/s, or over twice the solar equatorial rotational velocity. The other star with enhanced activity, Sanders 747, is a spectroscopic binary. We conclude that high activity in solar-type stars in M67 that exceeds solar levels is likely due to more rapid rotation rather than an excursion in solar-like activity cycles to unusually high levels. We estimate an upper limit of 0.2% for the range of brightness changes occurring as a result of chromospheric activity in solar-type stars and, by inference, in the Sun itself. We discuss possible implications for our understanding of angular momentum evolution in solar-type stars, and we tentatively attribute the rapid rotation in Sanders 1452 to a reduced braking efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.