Abstract

The grain boundary transport of lanthanum gallate has been studied with various doping concentrations, and the origins of blocking on the grain boundary are compared. La1-xSrxGaO3 samples (x = 0.005, 0.01, 0.05 and 0.1) have been prepared and their bulk (grain) and grain boundary resistances been experimentally measured as a function of temperature (T: 200–550 °C) and oxygen partial pressure (Po2) using ac-impedance measurements. In addition, Hebb-Wagner polarization measurements have been conducted to investigate the electrical conductivity of minor charge carriers in the lanthanum gallates. The grain boundary resistance in the low-doped materials (x = 0.005 and 0.01) increases with increasing Po2 while in the highly-doped materials (x = 0.05, 0.1) it hardly depended on Po2. At lower concentrations conduction is mixed and at higher concentrations is found to be predominantly ionic conductivity. The space charge model successfully describes the mixed conduction at the grain boundary at low-doping, but does not explain the predominant ionic conductivity at high-doping. The origin of blocking at high-doping is explained by the crystallographic asymmetry of the grain boundary with respect to the bulk and/or Sr-segregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.