Abstract

A phenomenon observed earlier in the development of metabolomics as a systems biology methodology, consists of a small but significant number of metabolites whose levels are highly correlated between biological replicates. Contrary to initial interpretations, these correlations are not necessarily only between neighboring metabolites in the metabolic network. Most metabolites that participate in common reactions are not correlated in this way, while some non-neighboring metabolites are highly correlated. Here we investigate the origin of such correlations using metabolic control analysis and computer simulation of biochemical networks. A series of cases is identified which lead to high correlation between metabolite pairs in replicate measurement. These are (1) chemical equilibrium, (2) mass conservation, (3) asymmetric control distribution, and (4) unusually high variance in the expression of a single gene. The importance of identifying metabolite correlations within a physiological state and changes of correlation between different states is discussed in the context of systems biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call