Abstract

This study covers hydrogen-rich fancy color diamonds that exhibit complex spectra from the UV all the way to the mid-IR. The diamonds with such spectra that are included here show a large range of colors from brownish yellow to brown, yellow-green to olive and gray to violet. The color origin of such diamonds has always been stated as “hydrogen-related”, without much evidence pointing towards hydrogen actually causing absorptions in the visible spectral range, but only based on their unusually high IR active hydrogen content determined via their FTIR spectra. The diamonds analyzed during this work always showed a series of absorptions in the near-infrared at 7495, 7850, 8255, and 8615 cm−1. For the first time, this here presented study shows the results of low temperature near-infrared spectroscopy performed for a series of differently colored diamonds that all showed these NIR absorptions. When measured at 77 K, it became clear that these NIR bands are actually part of an electronic optical center with ZPLs at 1329.8 to 1330.2 nm (7520–7518 cm−1)/1331.8 to 1332.2 nm (7508–7506 cm−1) and 1341 to 1341.2 nm (7457–7456 cm−1). In this paper we will refer to this defect as the “1330 nm center” (which corresponds to 7519 cm−1) for the sake of brevity. The detailed analysis of the spectra has demonstrated that the colors of diamonds that exhibit the 1330 nm center spectra are caused partially by this same center, and by complex absorption bands associated to two series of ZPLs represented by a number of sharp bands between 965 and 1001 nm, referred to as the 990 nm series in this study. Of these, the 990 nm series was found only in diamonds with significant IR active hydrogen concentrations, while the 1330 nm center was determined to be independent from the concentration of IR active hydrogen. The 1330 nm center was found in spectra lacking the 990 nm series of ZPLs, but the 990 nm series has never been found in spectra without the 1330 nm center. We are suggesting that the defects involved in these absorptions are all nickel‑nitrogen-related, with the 1330 nm center lacking hydrogen while it seems reasonable to assume that the 990 nm series includes hydrogen in its structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.