Abstract

We have studied the uncatalyzed and Lewis acid (LA)-catalyzed cycloaddition reaction between tropone and 1,1-dimethoxyethene using dispersion-corrected relativistic density functional theory (DFT). The LA catalysts BF3, B(C6H5)3, and B(C6F5)3 efficiently accelerate both the competing [4+2] and [8+2] cycloaddition reactions by lowering the activation barrier up to 12 kcal mol-1 compared to the uncatalyzed reaction. Our study reveals that the LA catalyst promotes both cycloaddition reaction pathways by LUMO-lowering catalysis and demonstrates that Pauli-lowering catalysis is not always the operative catalytic mechanism in cycloaddition reactions. Judicious choice of the LA catalyst can effectively impart regiocontrol of the cycloaddition: B(C6H5)3 furnishes the [8+2] adduct while B(C6F5)3 yields the [4+2] adduct. We discovered that the regioselectivity shift finds its origin in the ability of the LA to absorb distortion by adopting a trigonal pyramidal geometry around the boron atom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call