Abstract

The hypothesis that North American octoploid Agropyron smithii Rydb., 2n = 56, originated by hybridization between tetraploid Agropyron and Elymus species, followed by chromosome doubling, was tested by observing chromosome pairing in hybrids of A. smithii with an induced amphiploid, 2n = 56, derived from E. canadensis L., 2n = 28, X E. dasystachys Trin., 2n = 28, F1's. Chromosome pairing in A. smithii averaged 0.52I, 27.70II, 0.01III, and 0.01IV in 184 metaphase‐I cells; and the amphiploid averaged 1.13I and 27.44II in 195 cells. Chromosome pairing in A. smithii X amphiploid hybrids averaged 8.20I, 23.38II, 0.34III, and 0.05IV in 101 metaphase‐I cells. It was concluded that A. smithii was genomically similar to the E. canadensis‐E. dasystachys amphiploid. The basic genome formula of the amphiploid is SSHHJJXX, with the SSHH genomes coming from E. canadensis and the JJXX genomes coming from E. dasystachys. Consideration of the morphological, ecological, and reproductive characteristics of all North American species that contain the basic SSHH and JJXX genomes led to the conclusion that A. dasystachyum (Hook.) Scribn., SSHH, and E. triticoides Buckl., JJXX, are the probable progenitors of A. smithii.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.