Abstract
Recent work indicates that the nearby Galactic halo is dominated by the debris from a major accretion event. We confirm that result from an analysis of APOGEE-DR14 element abundances and $\textit{Gaia}$-DR2 kinematics of halo stars. We show that $\sim$2/3 of nearby halo stars have high orbital eccentricities ($e \gtrsim 0.8$), and abundance patterns typical of massive Milky Way dwarf galaxy satellites today, characterised by relatively low [Fe/H], [Mg/Fe], [Al/Fe], and [Ni/Fe]. The trend followed by high $e$ stars in the [Mg/Fe]-[Fe/H] plane shows a change of slope at [Fe/H]$\sim-1.3$, which is also typical of stellar populations from relatively massive dwarf galaxies. Low $e$ stars exhibit no such change of slope within the observed [Fe/H] range and show slightly higher abundances of Mg, Al and Ni. Unlike their low $e$ counterparts, high $e$ stars show slightly retrograde motion, make higher vertical excursions and reach larger apocentre radii. By comparing the position in [Mg/Fe]-[Fe/H] space of high $e$ stars with those of accreted galaxies from the EAGLE suite of cosmological simulations we constrain the mass of the accreted satellite to be in the range $10^{8.5}\lesssim M_*\lesssim 10^{9}\mathrm{M_\odot}$. We show that the median orbital eccentricities of debris are largely unchanged since merger time, implying that this accretion event likely happened at $z\lesssim1.5$. The exact nature of the low $e$ population is unclear, but we hypothesise that it is a combination of $\textit{in situ}$ star formation, high $|z|$ disc stars, lower mass accretion events, and contamination by the low $e$ tail of the high $e$ population. Finally, our results imply that the accretion history of the Milky Way was quite unusual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.