Abstract

Aims. We study the complex H2 outflows in the inner 300 AU of the young triple star system T Tauri, with the goal of understanding the origin, excitation and evolution of the circumstellar matter. Methods. Using high spatial resolution, integral-field spectroscopy in the J and K photometric bands from SINFONI/VLT, we trace the spatial distribution of 12 H2 ro-vibrational emission lines, as well as one forbidden Fe II line. The ratio of line strengths provides a two-dimensional view of both the variable extinction and excitation temperature in this region, while the line-center velocities, coupled with previously published imagery, allow an assessment of the 3D space velocities and evolution of the outflows. Results. Several spatially distinct flows – some with a bow shock structure – appear within 1. �� 5 of the stars. Data taken two years apart clearly show the evolution of these flows. Some structures move and evolve, while others are stationary in the plane of the sky. The two-dimensional extinction map shows that the extinction between T Tau N and T Tau S is very high. In addition to being clumpy the extincting material forms part of a filament that extends to the east of the stars. In areas with strong line emission, the v = 1–0 S (1)/v = 2–1 S (1) line ratio ranges from 8 to 20, indicating that all of the observed H2 is shock excited. The outflows in the immediate vicinity of T Tau S span ∼270 ◦ and are all blue-shifted, suggesting that they are produced by more than one star. We propose that T Tau N drives the east-west outflow, while T Tau Sa and T Tau Sb are the sources of the southeast-northwest and a previously undetected southwest outflow, respectively. There is a large spatial overlap between the [Fe II] line emission and previously measured UV fluorescent H2 emission, showing that both may be produced in J-shocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.