Abstract

The Huwan Shear Zone (HSZ) is an eclogite bearing transpressive wrench zone located along the Shangdan Suture that juxtaposes the Paleozoic Qinling and Mesozoic Hong'an–Dabie orogenic terrains. The region preserves a complex history that bridges the gap between adjacent orogenic terrains. Simultaneous in-situ trace element, U–Th–Pb and Lu–Hf‐isotope analysis of zircon grains from samples of the Xiongdian and Sujiahe eclogite identify a late Carboniferous to early Permian period of high pressure metamorphism, ca. 283 to 306Ma. Zircon grains are observed to respond to metamorphic overprint via a two stage process: (1) An initial prograde stage of fluid catalyzed interface coupled dissolution–reprecipitation, involving exsolution of a non-ideal solid solution thorite (ThSiO4) end member and loss of highly incompatible components (LREE and Pb), (2) A second stage of coupled zircon dissolution, coarsening, and new rim growth in equilibrium with garnet at high pressure conditions.We identify Proterozoic whole rock Sm–Nd and zircon grain Lu–Hf isotopic evidence which challenges the traditional interpretation that the Xiongdian and Sujiahe eclogite formed in response to early Paleozoic mantle melting and oceanic crust generation. We argue the Huwan Shear Zone contains no conclusive evidence of early/middle Paleozoic oceanic crust, but rather Proterozoic crustal components analogous to those found in the Northern Qinling Terrain and associated with formation of the Shangdan Suture. We present a simpler geodynamic model involving continuous convergence and accretion of terrains onto the southern margin of the North China Block during the Paleozoic Qinling and Mesozoic Dabie orogenies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.