Abstract
A Fermi arc is a disconnected segment of a Fermi surface observed in the pseudogap phase of cuprate superconductors. This simple description belies the fundamental inconsistency in the physics of Fermi arcs, specifically that such segments violate the topological integrity of the band. Efforts to resolve this contradiction of experiment and theory have focused on connecting the ends of the Fermi arc back on itself to form a pocket, with limited and controversial success. Here we show the Fermi arc, while composed of real spectral weight, lacks the quasiparticles to be a true Fermi surface. To reach this conclusion we developed a new photoemission-based technique that directly probes the interplay of pair-forming and pair-breaking processes with unprecedented precision. We find the spectral weight composing the Fermi arc is shifted from the gap edge to the Fermi energy by pair-breaking processes. While real, this weight does not form a true Fermi surface, because the quasiparticles, though significantly broadened, remain at the gap edge. This non-quasiparticle weight may account for much of the unexplained behavior of the pseudogap phase of the cuprates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.