Abstract

Abstract In order to better understand the generation and primary source of mature thermogenic gas in shale, and to evaluate the residual gas generation potential of the shale at different maturity levels, we performed pyrolysis experiments on an organic-rich marine shale and its kerogens prepared by artificial maturation. The results indicate that the thermal maturation of organic matter in the shale can be divided into four stages: oil generation ( 2+ hydrocarbon gases are produced during condensate and wet gas generation. The kerogen at a thermal maturity of >3.0% EasyRo still has methane generation potential. Whether or not gas generation potential of a highly mature kerogen has a commercial significance depends on its organic matter richness, thermal maturity internal and some other geological factors, such as caprock sealing property, reservoir physical property, and tectonic movement. In addition to the gas produced from kerogen cracking, gas is also generated from the secondary cracking of residual bitumen as maturation progresses. Early hydrocarbon expulsion during oil generation likely has a considerable effect on the amount and δ 13 C values of the late-generated shale gas. The lower the oil expulsion efficiency of a shale, i.e., the more retained bitumen, then the higher the productivity of post-mature shale gas and comparative enrichment of the latter in 1 2 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call