Abstract

BackgroundIn social Hymenoptera (ants, bees and wasps), various chemical compounds present on the cuticle have been shown to act as fertility signals. In addition, specific queen-characteristic hydrocarbons have been implicated as sterility-inducing queen signals in ants, wasps and bumblebees. In Corbiculate bees, however, the chemical nature of queen-characteristic and fertility-linked compounds appears to be more diverse than in ants and wasps. Moreover, it remains unknown how queen signals evolved across this group and how they might have been co-opted from fertility signals in solitary ancestors.ResultsHere, we perform a phylogenetic analysis of fertility-linked compounds across 16 species of solitary and eusocial bee species, comprising both literature data as well as new primary data from a key solitary outgroup species, the oil-collecting bee Centris analis, and the highly eusocial stingless bee Scaptotrigona depilis. Our results demonstrate the presence of fertility-linked compounds belonging to 12 different chemical classes. In addition, we find that some classes of compounds (linear and branched alkanes, alkenes, esters and fatty acids) were already present as fertility-linked signals in the solitary ancestors of Corbiculate bees, while others appear to be specific to certain species.ConclusionOverall, our results suggest that queen signals in Corbiculate bees are likely derived from ancestral fertility-linked compounds present in solitary bees that lacked reproductive castes. These original fertility-linked cues or signals could have been produced either as a by-product of ovarian activation or could have served other communicative purposes, such as in mate recognition or the regulation of egg-laying.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0509-8) contains supplementary material, which is available to authorized users.

Highlights

  • In social Hymenoptera, various chemical compounds present on the cuticle have been shown to act as fertility signals

  • Specific linear alkanes, alkenes, esters and fatty acids were already present with high likelihood (>50 %) as fertility-linked compounds in the ancestor of all solitary and social bees included in our analysis (Fig. 1, Table 1), whereas branched alkanes first appeared as fertility-linked compounds in the common ancestors of the Megachilidae and Apidae (Fig. 1, Table 1)

  • Whereas both linear alkanes and alkenes are relatively conserved as fertility signals across all species analysed, fatty acids seem to have been lost in the common ancestor of stingless bees and bumblebees, and esters appear to have been gained and lost as fertility signals several times (Fig. 1)

Read more

Summary

Introduction

In social Hymenoptera (ants, bees and wasps), various chemical compounds present on the cuticle have been shown to act as fertility signals. Chemical substances present on the cuticle of individuals can serve various purposes, from the primary function of preventing desiccation [3] to having roles in nestmate and species recognition [4,5,6], courtship regulation [7,8,9] and signalling caste or reproductive status [10,11,12,13,14,15,16,17,18,19] With respect to the latter, it has recently been shown in some hymenopteran species that. In the stingless bee Friesella schrottkyi, it has recently been shown that specific linear and methyl branched alkanes were characteristic for the queen and that non-polar cuticular queen extracts inhibited worker reproduction [32]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call