Abstract

We present details of our experimental and theoretical study of the components of the anisotropic magnetoresistance (AMR) in (Ga,Mn)As. We develop experimental methods to yield directly the non-crystalline and crystalline AMR components which are then independently analysed. These methods are used to explore the unusual phenomenology of the AMR in ultra thin (5 nm) (Ga,Mn)As layers and to demonstrate how the components of the AMR can be engineered through lithography induced local lattice relaxations. We expand on our previous [A.W. Rushforth, et al., Phys. Rev. Lett. 99 (2007) 147207] theoretical analysis and numerical calculations to present a simplified analytical model for the origin of the non-crystalline AMR. We find that the sign of the non-crystalline AMR is determined by the form of the spin–orbit coupling in the host band and by the relative strengths of the non-magnetic and magnetic contributions to the impurity potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.