Abstract

The goal of a melon harvesting robot is to maximize the number of melons it harvests given a progressive speed. Selecting the sequence of melons that yields this maximum is an example of the orienteering problem with time windows. We present a dynamic programming-based algorithm that yields a strictly optimal solution to this problem. In contrast to similar methods, this algorithm utilizes the unique properties of the robotic harvesting task, such as uniform gain per vertex and time windows, to expand domination criteria and quicken the optimal path selection process. We prove that the complexity of this algorithm is linearithmic in the number of melons and can be implemented online if there is a bound on the density. The results of this algorithm are demonstrated to be significantly better than the standard heuristic solution for a wide range of harvesting robot scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.