Abstract

This study examined whether the torques and EMG activity that precede and accompany bilateral arm pulls made by standing humans demonstrate a pulse height form of organization. Nine adults made abrupt bilateral pulls in the sagittal plane against a handle, to force targets equal to 5, 10, 20, 40, 60, 80 and 95% of their maximal pulling force (%MPF). The force applied at the handle, ground reaction forces, the center of pressure (CP), and EMG activity in gastrocnemius (GS), biceps femoris (BF), tibialis anterior (TA) and quadriceps (QD) muscles were recorded. Our analysis divided the action into a pre-pull phase (events prior to the increase of handle force) and a pulling phase (while handle force was greater than zero). We evaluated the effects of %MPF on the durations and peak amplitudes of the pre-pull and pulling angular impulses about the ankle joint and on pre-pull EMG patterns. The results showed that the angular impulse associated with the pulling torque (due to the reactive force on the body during the pull) had a pulse height organization: peak torque increased linearly with %MPF, and the durations of the pulling torque were relatively constant. In contrast, a pulse height organization did not characterize the pre-pull period for either the angular impulse associated with ankle torque (due to net ground reaction force) or EMG activity in the leg muscles. Rather, peak ankle torque typically increased up to some submaximal %MPF and then plateaued, perhaps due to a constraining effect on foot length on CP. The durations of pre-pull ankle torques increased over the whole range of %MPF, thereby compensating for the limit on ankle torque. Depending on the subject, the muscles were recruited in two different orders: GS-BF-TA-QD, or GS-TA-BF-QD. As the %MPF increased, the EMG onset times of all four muscles occurred earlier, and there was a greater likelihood that the BF, TA and QD muscles would be recruited on a given trial. The changes in the ankle torque and EMG patterns were gradual, suggesting that the pre-pull phase could have one underlying form of organization, with parameters that are tuned to task goals and anatomical constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.