Abstract

The organization of DNA in the mitotic metaphase and polytene chromosomes of the fungus gnat, Sciara coprophila, has been studied using base-specific DNA ligands, including anti-nucleoside antibodies. The DNA of metaphase and polytene chromosomes reacts with AT-specific probes (quinacrine, DAPI, Hoechst 33258 and anti-adenosine) and to a somewhat lesser extent with GC-specific probes (mithramycin, chromomycin A3 and anti-cytidine). In virtually every band of the polytene chromosomes chromomycin A3 fluorescence is almost totally quenched by counterstaining with the AT-specific ligand methyl green. This indicates that GC base pairs in most bands are closely interspersed with AT base pairs. The only exceptions are band IV-8A3 and the nucleolus organizer on the X. In contrast, quinacrine and DAPI fluorescence in every band is only slightly quenched by counterstaining with the GC-specific ligand actinomycin D. Thus, each band contains a moderate proportion of AT-rich DNA sequences with few interspersed GC base pairs. - The C-bands in mitotic and polytene chromosomes can be visualized by Giemsa staining after differential extraction of DNA and those in polytene chromosomes by the use of base-specific fluorochromes or antibodies without prior extraction of DNA. C-bands are located in the centromeric region of every chromosome, and the telomeric region of some. The C-bands in the polytene chromosomes contain AT-rich DNA sequences without closely interspered GC base pairs and lack relatively GC-rich sequences. However, one C-band in the centromeric region of chromosome IV contains relatively GC-rich sequences with closely interspersed AT base pairs. - C-bands make up less than 1% of polytene chromosomes compared to nearly 20% of mitotic metaphase chromosomes. The C-bands in polytene chromosomes are detectable with AT-specific or GC-specific probes while those in metaphase chromosomes are not. Thus, during polytenization there is selective replication of highly At-rich and relatively GC-rich sequences and underreplication of the remainder of the DNA sequences in the constitutive heterochromatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call