Abstract
Formation of organic co-crystals is an effective strategy to synthesize near infrared emission and nonlinear optical (NLO) materials, which often show "1 + 1 > 2" performance. Moreover, the crystallization process can be effectively regulated through supramolecular interactions; thus the properties of co-crystal materials can also be flexibly regulated. Here, in order to further understand the nature and formation mechanism of co-crystals from the perspective of theoretical research, we studied the structures, intermolecular interactions, absorption spectra, charge transfer (CT) characteristics and nonlinear optical (NLO) properties of the newly synthesized organic co-crystals formed between naphthalenediimide based triangles (NDI, acceptor) and coronene (COR, donor). According to the analysis of decomposition of intermolecular interaction energy, dispersion energy played a major role, so the co-crystal properties can be regulated by regulating the intermolecular dispersion energy. More importantly, the formation of co-crystals NDI-COR and NDI-2COR reduced the Egap values with respect to those of their components. And there was significant intermolecular CT from COR to NDI and the degree of CT in NDI-COR was larger than that in NDI-2COR, so that the αtot and γtot values of NDI-COR and NDI-2COR were significantly greater than those of their components. Thus, the NLO properties of organic co-crystals can be further improved by enhancing the electron-donating ability of the donor and the electron-withdrawing ability of the acceptor to enhance the degree of intermolecular interaction energy and CT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.