Abstract

We study a variant of the classical bin-packing problem, the ordered open-end bin-packing problem, where first a bin can be filled to a level above 1 as long as the removal of the last piece brings the bin's level back to below 1 and second, the last piece is the largest-indexed piece among all pieces in the bin. We conduct both worst-case and average-case analyses for the problem. In the worst-case analysis, pieces of size 1 play distinct roles and render the analysis more difficult with their presence. We give lower bounds for the performance ratio of any online algorithm for cases both with and without the 1-pieces, and in the case without the 1-pieces, identify an online algorithm whose worst-case performance ratio is less than 2 and an offline algorithm with good worst-case performance. In the average-case analysis, assuming that pieces are independently and uniformly drawn from [0, 1], we find the optimal asymptotic average ratio of the number of occupied bins over the number of pieces. We also introduce other online algorithms and conduct simulation study on the average-case performances of all the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.