Abstract

We investigate the so-called order-sobrification monad proposed by Ho et al. (Log Methods Comput Sci 14:1–19, 2018) for solving the Ho–Zhao problem, and show that this monad is commutative. We also show that the Eilenberg–Moore algebras of the order-sobrification monad over dcpo’s are precisely the strongly complete dcpo’s and the algebra homomorphisms are those Scott-continuous functions preserving suprema of irreducible subsets. As a corollary, we show that this monad gives rise to the free strongly complete dcpo construction over the category of posets and Scott-continuous functions. A question related to this monad is left open alongside our discussion, an affirmative answer to which might lead to a uniform way of constructing non-sober complete lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.