Abstract

Kinetic models are the most important tool for predicting and evaluating the performance of flotation circuits. Gilsonite is a natural fossil resource similar to an oil asphalt, high in asphaltenes. Here, in order to determine the kinetic order and flotation rate of a gilsonite sample, flotation experiments were carried out in both rougher and cleaner stages. Experiments were conducted using the combinations of oil–MIBC and gas oil–pine oil, with one test without collector and frother. Five kinetic models were applied to the data obtained from the flotation tests using MATLAB software. Statistical analysis showed that the results of the experiment with oil–MIBC were highly in compliance with all models. Kinetic constants (k) were calculated as 0.1548 (s−1) and 0.0450 (s−1) for rougher and cleaner stages, respectively. Rougher and cleaner tests without collector and frother also matched all models well (R2 > 0.98), with k values of 0.2163 (s−1) and 0.284 (s−1), respectively. The relationship between flotation rate constant, maximum combustible recovery, and particle size showed that the maximum flotation combustible recovery and flotation rate were obtained in the size range of −250 + 106 μm in the rougher and cleaner stages. The combustible recovery and flotation rate were higher in the rougher flotation process than in the cleaner stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.