Abstract

With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar EXO 1722-363 (IGR J17252-3616), we carried out a pulse timing analysis to determine the orbital solution for the first time. The binary system is characterized by a_x sin(i) = 101 +/- 3 lt-s and P_orb = 9.7403 +/- 0.0004 days (90% confidence), with the precision of the orbital period being obtained by connecting datasets separated by more than 7 years (272 orbital cycles). The orbit is consistent with circular, and e < 0.19 at the 90% confidence level. The mass function is 11.7 +/- 1.2 M_sun and confirms that this source is a High Mass X-ray Binary (HMXB) system. The orbital period, along with the previously known ~414 s pulse period, places this system in the part of the Corbet diagram populated by supergiant wind accretors. Using previous eclipse time measurements by Corbet et al. and our orbital solution, combined with the assumption that the primary underfills its Roche lobe, we find i > 61 degrees at the 99% confidence level, the radius of the primary is between 21 R_sun and 37 R_sun, and its mass is less than about 22 M_sun. The acceptable range of radius and mass shows that the primary is probably a supergiant of spectral type B0I-B5I. Photometric measurements of its likely counterpart are consistent with the spectral type and luminosity if the distance to the system is between 5.3 kpc and 8.7 kpc. Spectral analysis of the pulsar as a function of orbital phase reveals an evolution of the hydrogen column density suggestive of dense filaments of gas in the downstream wake of the pulsar, with higher levels of absorption seen at orbital phases 0.5-1.0, as well as a variable Fe K_alpha line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call