Abstract

In this work we study the additive orbifold cohomology of the moduli stack of smooth genus g curves. We show that this problem reduces to investigating the rational cohomology of moduli spaces of cyclic covers of curves where the genus of the covering curve is g. Then we work out the case of genus g=3. Furthermore, we determine the part of the orbifold cohomology of the Deligne-Mumford compactification of the moduli space of genus 3 curves that comes from the Zariski closure of the inertia stack of M_3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.