Abstract

In earthmoving sites, multi-wheeled vehicles are used to excavate a sandy soil or to pull other construction machinery. In this paper, the mechanism of a 5.88 kN weight, two-axle, four-wheel vehicle running on a loose sandy soil is theoretically analysed. For given terrain-wheel system constants, the combination of the effective braking force of the front wheel during pure rolling state and the effective driving force of the rear wheel during driving action will clarify the relation between effective effort of the vehicle and slip ratio and the relation between amounts of sinkage the front and rear wheels and slip ratio, etc. The maximum effective tractive effort of the vehicle varies with the height of application force and the position of the center of gravity of the vehicle. The optimum height of application of force and the eccentricity of the center of gravity to obtain the largest value of the maximum effective tractive effort can be explained with an analytical simulation program. Results of this study showed that the optimum height of application force should be 30 cm and the optimum eccentricity of the center of gravity is 0.05 for a vehicle considered for this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.