Abstract

Many problems exist in the layout of working surfaces in high-gas mines, such as the low efficiency of roadway excavation, difficulties in maintenance after excavation, and serious resource wastes due to difficulties in recovering coal pillars between roadways. Taking the project profile in the west wing mining area of Sihe Coal Mine as the background, this work proposed an optimization plan for the staggered-layer arrangement of roadways. The minimum retained size of the coal pillar was calculated through theoretical analysis, and the plastic failure and deformations of surrounding rocks under different coal pillar sizes and roadway layouts were compared based on finite difference numerical simulations. The reasonable retained size of the coal pillar was determined to be 45 m, and the roadway layout was determined according to the distribution of coal and rock strata in the mining field. The technical measures of base angle pressure relief blasting and strengthening support were proposed to ensure the safety and stability of surrounding rocks of roadways during the service period after the layout plan was optimized. Similar simulation tests were used to study the damage deformations and stress changes of the blasting pressure relief floor. On-site tests showed that the optimized roadway layout greatly improved the recovery rate of coal resources. In addition, surrounding rocks had good stability, and they could be simply repaired or serve the next working surface directly without being repaired. These research results provide a scientific basis and useful reference for similar projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call