Abstract

Pulmonary vein isolation (PVI) with radiofrequency (RF) catheter ablation is an effective treatment option for patients with paroxysmal AF. However, traditional point by point RF ablation can be time consuming and technically challenging. To simplify the ablation procedure, without compromising procedure outcome, several "single shot" ablation systems have been developed. The multi-electrode RF Balloon catheter HELIOSTAR is a 28-mm compliant balloon compatible with the CARTO 3D electroanatomical mapping system; an optimized step-by-step workflow to perform PVI is described. Procedures are performed under general anesthesia with unique transseptal puncture. To evaluate the optimal electrode-tissue contact and best RF Balloon positioning, the following baseline indicators should be fulfilled: inflation index > 0.8, impedance range close to 100 Ohms with a variability of less than 20 Ohms across electrodes, temperature variability on all electrodes < 3°C with a maximum temperature of 31°C. RF delivery along the posterior wall is programmed to 20s or shorter in case of esophageal temperature rise (> 2°C compared to baseline) and 60s for all the other segments. Target parameters for PVI are 1) time to isolation less than 12s; 2) impedance drop > 12 Ohms; 3) temperature rise > 6°C. Standardized workflow for RF Balloon is mandatory to achieve efficacy and safety with this new promising technology. In the absence of international guidelines, a single high-volume center procedural strategy is described for PVI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.