Abstract

Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) ablation provides a precise, non-invasive treatment for lesions in adults. In children, MR-HIFU’s potential remains largely unexplored, though its non-invasive and non-ionizing nature holds promise. Yet, pediatric patients pose challenges affecting treatment: young children require general anesthesia, exhibit wide ranges of anatomy, and have varying lesion sizes and locations. These demonstrate a need for standardized treatment approaches and physical aids to optimize patient position, reduce time-intensive repositioning, and thus reduce overall treatment time. Further improvement of ablation rate and reduction of risk are also possible via improved monitoring of skin temperature during ablation and mild hyperthermia. Improvements in treatment planning and volumetric rate may save time and allow for treatment of larger lesions, increase patient throughput, and possibly increase efficacy and lower cost. This study aims to quantify and examine how such improvements could increase the time allocated for direct ablation and produce better outcomes.

Highlights

  • Background/introduction Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) ablation provides a precise, non-invasive treatment for lesions in adults

  • Pediatric patients pose challenges affecting treatment: young children require general anesthesia, exhibit wide ranges of anatomy, and have varying lesion sizes and locations. These demonstrate a need for standardized treatment approaches and physical aids to optimize patient position, reduce time-intensive repositioning, and reduce overall treatment time

  • This study aims to quantify and examine how such improvements could increase the time allocated for direct ablation and produce better outcomes

Read more

Summary

Introduction

Background/introduction Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) ablation provides a precise, non-invasive treatment for lesions in adults. Pediatric patients pose challenges affecting treatment: young children require general anesthesia, exhibit wide ranges of anatomy, and have varying lesion sizes and locations. These demonstrate a need for standardized treatment approaches and physical aids to optimize patient position, reduce time-intensive repositioning, and reduce overall treatment time. Improvements in treatment planning and volumetric rate may save time and allow for treatment of larger lesions, increase patient throughput, and possibly increase efficacy and lower cost. This study aims to quantify and examine how such improvements could increase the time allocated for direct ablation and produce better outcomes

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.