Abstract

Through the use of the TRNSYS simulation program, the performance of a domestic solar water heating system operating with natural circulation (thermosyphon) and a daily hot water load has been analysed. The effect of tank height on the annual solar fraction of the system has been investigated for different hot water load temperatures and storage tank volumes. Optimum values (values which maximize the annual solar fraction of the system) for storage tank height and volume are calculated for operating temperatures ranging from 50 to 80°C. The response of the system to the ratio of the storage tank volume to the collector area is investigated. The dependence of the solar fraction on tank height was observed to be more notable in the case of large tank volumes and high load temperatures. The results indicate the existence of an optimum value for the tank volume at a given tank height and a high load temperature. At lower temperatures, the solar fraction rises rapidly with tank volume to a nearly constant level. An optimum value of the storage-tank-volume-to-collector-area ratio was also observed at high load temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.