Abstract

In the field of drug discovery, it is particularly important to discover bioactive compounds through high-throughput virtual screening. The maximum common substructure-based (MCS) algorithm is a promising method for the virtual screening of drug candidates. However, in practical applications, there is always a trade-off between efficiency and accuracy. In this paper, we optimized this method by running time evaluation using essential drugs defined by WHO and FDA-approved small-molecule drugs. The amount of running time allocated to the MCS-based virtual screening was varied, and statistical analysis was conducted to study the impact of computation running time on the screening results. It was determined that the running time efficiency can be improved without compromising accuracy by setting proper running time thresholds. In addition, the similarity of compound structures and its relevance to biological activity are analyzed quantitatively, which highlight the applicability of the MCS-based methods in predicting functions of small molecules. 15–30s was established as a reasonable range for selecting a candidate running time threshold. The effect of CPU speed is considered and the conclusion is generalized. The potential biological activity of small molecules with unknown functions can be predicted by the MCS-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.